SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Subject C 22330

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any otherprogram based on equivalent concept.

| Q.
 No. | Sub
 Q. N. | Answers | Marking
 Scheme |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | (A) | Attempt any FIVE of the following : | 10- Total
 Marks |
| | (a) | Define impedance and reactance related to single phase AC series circuit. Give unit of
 both. | $\mathbf{2 M}$ |
| | Impedance of single phase AC series circuit is defined as the net opposition offered to the
 flow of AC current by the combination of R, L and C.
 Unit of Impedance is $\Omega($ Ohm).
 Reactance of single phase AC series circuit is defined as the opposition offered to the flow of
 AC current by either inductor(L) or capacitor(C).
 Unit of reactance is Ω (Ohm). | Each
 correct
 definitio
 n with
 its unit-
 1M | |
| (b) | Draw the impedance triangle for R-L series circuit. | $\mathbf{2 M}$ | |

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network

Ans:	Fig. impedance triangle for $R-L$ series circuit.	impedan ce triangle- 2M
(c)	State Q factor for parallel R.L.C. circuit.	2M
Ans:	Q factor for parallel R.L.C. circuit is defined as the current magnification provided at resonance. The magnitude of current flowing through inductor and capacitor is equal to Q times the input sinusoidal current I. As the parallel circuit magnifies the current it is alsocalled as the current resonance circuit. OR The Quality factor of Parallel resonance RLCcircuit is defined as the ratio of current circulating between its two branches to the line current drawn from the supply. Mathematically, $Q=R X_{C}$	Any correct definitio n -2M
(d)	Give four steps to solve nodel analysis.	2M
Ans:	four steps to solve nodal analysis- 1.all the nodes present in the network including the reference(ground) node)are identified and marked. The number of equations to be solved is given by $(n-1)$ where $n=n o$ of independent nodes. 2. Mark all the branch currents. 3. Using KCL write current equation for each node in terms of node voltage and sources present. 4. The equations can be solved either simultaneously or by Cramer's rule to obtain various node voltages.	Each step $1 / 2 \mathrm{M}$

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

| | The current flowing through any element can be found out by substituting the value of node
 voltages in the relevant equation. |
| :--- | :--- | :--- | :--- |
| e) | Write the formula for star to delta. |
| Ans: | The formula for star to delta
 Star to Delta (\boldsymbol{Y} to Δ) \boldsymbol{R} esistance |

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

		Any electrical network can be easily analyzed if it is represented with an equivalent model, which gives the relation between input and output variables. A two port network is a network having 2 ports. One port is used as input port and the other port is used as output port. These ports are called port1 and port2 respectively. Once a network is represented in this equivalent form, the response of the network to signals applied to the ports can be calculated easily, without solving for all the internal voltages and currents in the network. It also allows similar circuits or devices to be compared easily. A two port network representation is shown in the following figure. Here, terminals 1 and 1^{\prime} represent port1 and terminals 2 \& 2' represent port2. The common models that are used are referred to as z-parameters, y -parameters, h parameters, g-parameters, and ABCD-parameters..	
$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
2		Attempt any THREE of the following:	12- Total Marks
	a)	An RC series circuit consists of $R=10 \Omega$ and $C=200 \boldsymbol{\mu}$.it is connected across $250 \mathrm{~V}, \mathbf{5 0 H z}$, $1 \phi A C$. Calculate the value of power consumed by the circuit.	4M
	Ans:		$\begin{aligned} & 1 \mathrm{M}-\mathrm{Xc} \\ & 1 \mathrm{M}-\mathrm{Z} \end{aligned}$

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network
Model Answer

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Subject c 22330

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network
Model Answer
Subject C 22330

Ans:

Step $2-$ Equation for loop I (A BEFA) -:
Apply KVL,

$$
\begin{aligned}
24-3 I_{1}-6\left(I_{1}-I_{2}\right) & =0 \\
-3 I_{1}-6 I_{1}+6 I_{2} & =-24 \\
-9 I_{1}+6 I_{2} & =-24 \\
\therefore 9 I_{1}-6 I_{2} & =24
\end{aligned}
$$

Step 3 -: Equation for loop \mathbb{I} (BCDEB) -:

$$
\begin{align*}
-3 I_{2}-18-6\left(I_{2}-I_{1}\right) & =0 \\
-3 I_{2}-6 I_{2}+6 I_{1} & =18 \\
6 I_{1}+9 I_{2} & =18 \tag{2}
\end{align*}
$$

Solving equation (n) and (2) by Determinant Method
$\begin{aligned} D=\left|\begin{array}{ll}9 & -6 \\ 6 & -9\end{array}\right| & =(-9) \times 9-[(-6) \times 6] \\ & =-81+36\end{aligned}$
$\therefore D=-45$
$\begin{aligned} & D_{1}=\left[\begin{array}{cc}24 & -6 \\ 18 & -9\end{array}\right]=24 \times(-9)-[(-6) \times 18] \\ &=-216+108\end{aligned}$
$\therefore D_{1}=-108$
$D_{2}=\left[\begin{array}{ll}9 & 24 \\ 6 & 18\end{array}\right]=9 \times 18-(24 \times 6)$
$=162-144$
$\therefore D_{2}=18$
$\therefore I_{1}=\frac{D_{1}}{D}=\frac{-108}{-45}=2.4 \mathrm{~A}$
$I_{2}=\frac{D_{2}}{D}=\frac{18}{-45}=-0.4 \mathrm{~A}$
\therefore The current in 6Ω resistor is $\left(z_{1}-z_{2}\right)$

$$
\begin{aligned}
& =2.4-(-0.4) \\
& =2.8 \mathrm{~A}
\end{aligned}
$$

$1 / 2 \mathrm{M}$ each equation

1M for I_{1},

1 M for I_{2},

1M for current through 6 ohm resistor

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Subject C 22330

Page 8/

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Subject c 22330

	Ans:	Replace the voltage sources v_{1} and v_{2} by short circit to obtain the circuit shown below : $\Rightarrow R_{T H} \sum_{T_{1}}^{1} R_{1} R_{2}$ $\begin{aligned} \therefore & R_{T H}=R_{1}\\| \\|_{2}^{d} \\ & \therefore R_{T H}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}} \end{aligned}$ But the condition for maximum power transter to the load is - $R_{L}=R_{T H} .$ \therefore The value of $R_{L}=R_{T H}$ so that maximum power will transfor from source to it. The equation for $P_{\text {max }}$-: $\left.P_{L_{\text {(} \text { ax })}}=\left(\frac{V_{T H}}{R_{T H}+R_{T H}}\right)^{2} \cdot R_{T H}\right)$ substitute $R=R T H$ \therefore Therefore the power tronster to the load is given by the equation $\frac{V_{T H}^{2}}{A_{T H}}$	3M-for RL 1M for power formula
$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
3		Attempt any THREE of the following :	12- Total Marks
	a)	List the power factor improves technique and explain any one with advantage and disadvantage	4M
	Ans:	Power factor improvement techniques are i) Synchronous Motors (or capacitors) ii) Static Capacitors	2Marks for Listing Techniq ues

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

	i) Synchronous Motors (or capacitors) : These machines draw leading kVAR when they are over-excited and, especially, when they are running idle. They are employed for correcting the power factor in bulk and have the special advantage that the amount of correction can be varied by changing their excitation. ii) Static Capacitors : They are installed to improve the power factor of a group of a.c. motors and are practically loss-free (i.e. they draw a current leading in phase by 90°). Since their capacitance is not variable, they tend to over-compensate on light loads, unless arrangements for automatic switching of the capacitor bank are made. iii) Phase Advancers : They are fitted with individual machines. However, it may be noted that the economical degree of correction to be applied in each case, depends upon the tariff arrangement between the consumers and the supply authorities.				2Marks for any one techniqu e
b)	Compare series resonance to parallel resonance on the basis of: (i) Resonant frequency (ii) Impedance (iii) Current and (iv) Magnification.				4M
Ans:	S.No.	Parameter	Series Circuit	Parallel Circuit	1 marks for each point
	1	Resonant frequency	$f_{r}=\frac{1}{2 \pi \sqrt{L C}}$	$f_{r}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$	
	2	Impedance	Minimum, $\mathrm{Z}=\mathrm{R}$	Maximum, $\mathrm{Z}=\mathrm{L} / \mathrm{CR}$	
	3	Current	Maximum, I = V/R	Minimum, I = V/(L/CR)	

Page 10/

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

	4	Magnification	Voltage magnification takes place	Current magnification takes place	
c)	Write the procedure to convert voltage source into equivalent current source. Give its application. Draw neat diagrams of both the sources.				4M
Ans:	A voltage source with a series resistance can be converted into (or replaced by) and equivalent current source with a parallel resistance. The steps for converting practical voltage source into practical current source. i)Find the value of current supplied by the source when a 'short' is put across terminals A and B. Therefore, Current I=V/R ii)The value of resistance which is connected in parallel with the equivalent current source have the same value of series resistance $\left(R_{s}=R_{s h}\right)$. ii)This equivalent current source is then connected in parallel with the shunt(parallel) resistance.				2 marks for Procedu re

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Page 13/

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject c 22330

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
4		Attempt any THREE of the following :	12- Total Marks
	(a)	In a series circuit containing pure resistance pure inductance, the current and voltage are expressed as: $l(t)=5 \sin (314 t+2 \Pi / 3) \text { and } v(t)=20 \sin (314 t+5 \Pi / 6)$ Find: (i) Impedance of circuit (ii) Resistance of circuit (iii) Inductance in circuit (iv) Average power drawn by circuit.	4M
	Ans:	$I(t)=5 \sin (314 t+2 \pi / 3) \text { and } v(t)=20 \sin (314 t+5 \pi / 6)$ Converting the above standard sinusoidal forms into polar forms Rms values of current and voltage are $I=5 / \sqrt{ } 2=3.54 \mathrm{~A} ; V=20 / \sqrt{ } 2=14.14 \mathrm{~V}$ Converting the above standard sinusoidal forms into polar forms $\begin{aligned} & \vec{I}=\left(3.54\left\lfloor 120^{\circ}\right) \mathrm{A}\right. \\ & \vec{V}=\left(14.14\left\lfloor 150^{\circ}\right) \mathrm{V}\right. \end{aligned}$ By Ohm's law, Circuit Impedance, $\vec{Z}=\vec{V} / \vec{I}=\left(14.14\left\lfloor 150^{\circ}\right) /\left(3.54\left\lfloor 120^{\circ}\right)\right.\right.$ $=\left(4\left\lfloor 30^{\circ}\right) \Omega\right.$	1 mark for Impeda nce

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

	$=(3.46+j 2) \Omega$ From polar form of Impedance i) Impedance of circuit $=\mathrm{Z}=4 \Omega$ From Rectangular form of impedance ii) Resistance of circuit $\mathrm{R}=\mathrm{Z} \operatorname{Cos} \phi=4 \operatorname{Cos}(30)=3.46 \Omega$ iii) Inductance of circuit L we know that $X_{L}=2 \Omega$ (from rectangular form of impedance) $\begin{aligned} & X_{L}=2 \pi f L \\ & L=X_{L} / 2 \pi f=2 /(2 \pi \times 50)=6.37 \times 10^{-3} \mathrm{H} \end{aligned}$ From polar form of Impedance, $\phi=30^{\circ}$ So, $\mathrm{pf}=\cos \phi$ $=\cos 30^{\circ}$ $=0.866 \text { lagging }$ iv) Average power, $\mathrm{P}=\mathrm{VI} \operatorname{Cos} \phi$ $\begin{aligned} = & 14.14 \times 3.54 \times \cos 30^{\circ} \\ = & 43.35 \mathrm{~W} \end{aligned}$	1 mark for Resistan ce 1 mark for Inductan ce 1 mark for Average power
(b)	Find $\mathrm{I}^{\prime} \mathrm{I}_{1}, \mathrm{I}_{2}$ power factor of the circuit in Fig. No. 4	4M

SUMMER- 19 EXAMINATION
 Subject Name: Electric circuits and network Model Answer

Fig. No. 4

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

	$\left.\begin{array}{rl} I_{2}=I \times \frac{z_{1}}{z_{1}+z_{2}} & =(20.33 L-16.52) \frac{(10 L 53.13)}{(10 \angle 5.71)} \\ & =(20.33(-16.52)(1147.42) \\ \therefore I_{2} & =20.33\left(30.9^{\circ} \mathrm{A}\right. \\ \therefore \text { power factor } & =\cos \phi \end{array}\right)=\cos (-16.52)$	
(c)	Explain the term bandwidth of a series resonant circuit. Derive its equation.	4M
Ans:	Band width (BW) of a series resonance circuit is defined ás the range of frequency over which circuit current is equal to or greater than $\frac{\mathrm{Ir}}{\sqrt{2}}$ or 70.7% of maximum current where I_{0} or $\mathrm{I}_{\mathrm{r}}=$ current at resonance. The resonance curve for a series RLC circuit is shown below: From the graph it is clear that for all frequencies lying between f_{1} and f_{2} the circuit current is equal to or greater than $\mathbf{7 0 . 7} \%$ of maximum current i.e.	Explanat ion 2 Marks

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer
Subject C 22330

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

	4d) Step 1: converting the delta formed by $A C D$ into equivalent star network. (ie) $\triangle A C D \Rightarrow Y A C D$ $\begin{aligned} & \therefore R_{1}=\frac{1 \times 2}{1+2+1}=\frac{2}{4}=0.5 \Omega \\ & R_{2}=\frac{1 \times 1}{1+2+1}=\frac{1}{4}=0.25 \Omega \\ & R_{3}=\frac{1 \times 2}{1+2+1}=\frac{2}{4}=0.5 \Omega \\ & 0.25 \Omega \end{aligned}$ the above circuit is converted as Here $1.25 \Omega 21.5 \Omega$ are in parallel $[1.25 \\| 1.5]=0.68$ $\therefore \text { network resistance }=1.18 \Omega$ Note: The problem can be done by converting delta ABC into equivalent star also.	
(e)	Find current through 6Ω resistor using superposition theorem. Fig. No. 6	4M

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network Model Answer

Page 22/

SUMMER- 19 EXAMINATION
 Subject Name: Electric circuits and network Model Answer

Subject C 22330
4e) Replace the 15 V source by a short circuit, keeping 30 V ${ }_{300} \stackrel{\Gamma}{T}_{I}^{T} \overbrace{I_{i}}^{5 \Omega} p \underbrace{4 \Omega}_{6} \quad$ Resistor $6 \Omega \& 4 \Omega$ are parallel

$$
\therefore 6 / / 4=2 \cdot 4 \Omega
$$

\rightarrow Current through 6Ω Resistor due to 30 V source ie I^{\prime},

Resistor $5 \Omega \times 2.4 \mathrm{~V}$ are in series ToTal Resistance.

$$
R_{T}=5+2 \cdot 4=7 \cdot 4 \Omega
$$

$$
R_{T}=7 \cdot 4 \Omega
$$

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Subject c 22330

$\mathrm{Q} .$ No.	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	A coil of resistance 20Ω and $200 \mu \mathrm{H}$ is in parallel with a variable capacitor. The voltage of the supply is 20 V at a frequency of $10^{6} \mathrm{~Hz}$. Calculate : (i) The value of C to give resonance. (ii) The \mathbf{Q} of the coil. (iii) The current in each branch of the circuit at resonance.	6M

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network Model Answer

Page 27/

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer
Subject C 22330

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Step 2:- similarly find current th r $A B$ Branch due to source $V_{2}=100 \mathrm{~L} 0^{\circ}$

The impedances $(4+j 8) \Omega \&(3+15) \Omega$ are in parallel of this combination is in series with $(5-j 6) \Omega$

$$
\begin{aligned}
R_{\text {th }} & =\frac{(4+j 8)(3+j 5)}{(4+j 8)(3+j 5)}=12+j 2(j 2)+40 \\
& \left.=\frac{-28+j 44}{7+j 13}=5215\right)<122.47 \\
\therefore R_{\text {th }} & =3.532460 .1876561 .69
\end{aligned}
$$

$$
I_{2}=\frac{100 \angle 0^{\circ}}{3.552 \angle \sigma^{\circ} \cdot 7,8}
$$

$$
I_{2}=28.32 \angle-60.78^{\circ}
$$

$$
I_{1}{ }^{\prime \prime}=\frac{(4+j 8)}{(7+j 13)} * I_{2}
$$

$$
=\frac{(4+j 8)}{(7+j 13)} * 28.32 L-60.78
$$

$$
=\frac{8.944 \angle 63.43}{14.765 \angle 61.69} * 28.32 \angle-60.78
$$

$$
\begin{aligned}
& 14.765 L 61.69 \\
= & \frac{8.944 * 28.32<63.43+(-60.78)}{14.765 / 61.69}
\end{aligned}
$$

$$
I_{1}{ }^{\prime \prime}=\frac{253.29 \angle 2.65}{14.765 \angle 61.69} \quad I_{1}^{\prime \prime}=17.15<-59.04
$$

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network
Model Answer
Subject C 22330

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Page 31/

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

SUMMER-19 EXAMINATION
Subject c 22330

Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total Marks
	a)	Use nodal analysis to calculate the current flowing in each branch of the network shown in Fig. No. 8	6M

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network
Model Answer
Subject c 22330

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer
(a)
current flowing th 20Ω resistor
$I_{20 \Omega}=\frac{\left(100 \mathrm{~L} 0^{\circ}\right)-(31.94(63.43)}{20}$
$=\frac{100+j 0-14.29-j 28.57}{20}$
$=\frac{100-14.29-j 28.57}{20}=\frac{85.72-j 28.56}{20}$
$=\frac{90035 \frac{L-18 \cdot 4.2}{20}}{20}$
$I_{\text {roe }}=4.517 \angle-18.42^{\circ}$ of of $4.285-j 1.427$ np
(b) current flowing th $^{2} 10 \Omega$ resistor)
$I_{10 \Omega}=\frac{V_{A}}{10}=\frac{31.94<63.43}{10}$
$\therefore I_{10 \Omega}=3.194 \angle 63.43$
Amp

(c) current flowing that $5 N$ resistor

$$
\stackrel{5}{\stackrel{5}{\Longrightarrow}(1 \mathrm{~m})}
$$

$$
I_{5 \Omega}=5.151<123.69 \quad \Rightarrow 1 \mathrm{mmp}
$$

b) Verify the reciprocity theorem in the circuit given in Fig. No. 9

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Subject C 22330

Page 35/

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

\square

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Subject C 22330

Page 40/

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

SUMMER-19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

