MAHARASHT

(Autonomous) (IS O/IEC - 2700

SUMMER-19 EXAMINATION

Model Answer

Subject Name: Electric circuits and network

Subject C 22330

1

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
1	(A)	Attempt any FIVE of the following :	10- Total Marks
	(a)	Define impedance and reactance related to single phase AC series circuit. Give unit of both.	2M
	Ans:	Impedance of single phase AC series circuit is defined as the net opposition offered to the flow of AC current by the combination of R, L and C.	Each correct definitio
		Unit of Impedance is $\Omega(Ohm)$. Reactance of single phase AC series circuit is defined as the opposition offered to the flow of AC current by either inductor(L) or capacitor(C). Unit of reactance is $\Omega(Ohm)$.	n with its unit- 1M
	(b)	Draw the impedance triangle for R-L series circuit.	2M

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

Ans:	*↑	impedan ce
	z	triangle-
	XL XL	2101
	θ	
	R	
	Fig. impedance triangle for R-L series circuit.	
(c)	State Q factor for parallel R.L.C. circuit.	2M
Ans:	Q factor for parallel R.L.C. circuit is defined as the current magnification provided at resonance. The magnitude of current flowing through inductor and capacitor is equal to Q times the input sinusoidal current l	Any correct definitio
	As the parallel circuit magnifies the current it is also called as the current resonance circuit.	n-2M
	OR	
	The Quality factor of Parallel resonance RLC circuit is defined as the ratio of current circulating between its two branches to the line current drawn from the supply.	
	Mathematically, $Q = RX_c$	
(d)	Give four steps to solve nodel analysis.	2M
Ans:	four steps to solve nodal analysis-	Each
	1.all the nodes present in the network including the reference(ground) node)are identified and marked . The number of equations to be solved is given by (n-1) where n= no of independent nodes.	step - 1/2 M
	2. Mark all the branch currents.	
	3. Using KCL write current equation for each node in terms of node voltage and sources present.	
	4. The equations can be solved either simultaneously or by Cramer's rule to obtain various node voltages.	

SUMMER- 19 EXAMINATION work <u>Model Answer</u>

Subject Name: Electric circuits and network

Subject

Subject C 22330

g)
Ans:
f)
e) Ans: f)

MAHARASHT (Autonomous) (IS O/IEC - 2700) Contract of the second s

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network Model Answer

Subject C 22330

2		Attempt any THREE of the following:	12- Total Marks
	a)	An RC series circuit consists of R = 10Ω and C = 200μ f.it is connected across 250 V, 50Hz, 1 ϕ AC. Calculate the value of power consumed by the circuit.	4M
	Ans:		1M –Xc, 1M-Z,

MAHARAS HTI (Autonomous) BOARD OF TECHNICAL EDUCATION

(Autonomous) (IS O/IEC - 2700) rtified)

SUMMER- 19 EXAMINATION

Su	ıbject N	Name: Electric circuits and network	Model Answer	Subject C	22330	
				L		5
		Solution -: Given :: R = 10.2, $c =Copositive ReactorX_c = \frac{1}{2\pi fc}= \frac{1}{2\times \pi}\therefore X_c = 15.4\therefore X_c = 15.4\therefore X_c = 15.4\therefore I_z = \int R^2 + x\therefore I_z =$	= 200 JUF, $V = 250V$, nice, X_{c} : - = $X_{50X} 200 \times 10^{6}$ 91 -2 = $10^{2} + (15 \cdot 91)^{2}$ 8.79 -2 = $13 \cdot 30 A$ is $\phi = \frac{R}{2} = \frac{10}{18 \cdot 79}$ (05 $\phi = 0.53$ (Jeadi Frower consum P:- is ϕ 13.30 × 0.53 52. 25 watt	rg) red by		1M- Power Factor, 1M- Power consum ed
		-: P = 1/6 0R -: P = 1	·7622 Kwatt			
		CS Scanned with CamScanner				
	b)	Describe the procedure to tune the g resonance.	given electrical circuit usi	ng the principle	es of	4M
	Ans:	An electrical circuit can be tuned to re	esonant frequency in any	one of the follo	wing ways:	4M

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u>

Subject C 22330

6

	ii)If the circuit is to be tuned to a particular frequency, and the frequency of the supply cannot be varied, then by using either a variable capacitor or variable inductor, the variable element can be varied till the circuit is tuned to the desired resonant frequency.	
c)	Find the current in 6 Ω resistor in the circuit shown in Fig. No. 1 using mesh analysis. $ \begin{array}{c} 3 \\ 4 \\ 24 \\ 7 \\ \hline \hline$	41
<u> </u>		

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

7

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C 22330

½ M-Ans: step 1 -: Name the nodes and identify the loops -: each equation 1M for -18V 24V l₁, 1M for l₂, D F Step 2 - Equation for loop I (ABEFA) -: 1M for current Apply KVL, through $24 - 3I_1 - 6(I_1 - I_2) = 0$ 6 ohm $-3J_1 - 6J_1 + 6J_2 = -24$ $-9J_1 + 6J_2 = -24$ $\cdot 29J_1 - 6J_2 = 24$ resistor Step 3 -: Equation for loop II (BCDEB) -: -372-18-6(72-71)=0 $-37_2 - 67_2 + 67_1 = (8) - (2)$ 67_1 + 97_2 = 18 - (2) Solving equation (1) and (2) by Determinant Method $D = \begin{bmatrix} 9 & -6 \\ -9 \end{bmatrix} = \begin{bmatrix} -9 \end{bmatrix} \times 9 & -\begin{bmatrix} (-6) \times 6 \end{bmatrix}$ = -81 + 36 ... D = -45 $D_{1} = \begin{bmatrix} 24 & -6 \\ 18 & -9 \end{bmatrix} = 24 \times (-9) - [(-6) \times 18] = -216 + 108$ $\mathbb{D}_2 = \begin{bmatrix} 9 & 24 \\ 6 & 18 \end{bmatrix} = 9 \times 18 - (24 \times 6)$ $J_1 = \frac{P_1}{D} = \frac{-108}{-45} = 2.4 \text{ A}$ $I_2 = \frac{D_2}{D} = \frac{18}{-45} = -0.4 \text{ A}$.: The current in 62 resistor is (21-22) = 2.4 - (-0.4) = 2.8A

– Page 7/

MAHARASHT BOARD OF TECHNICAL EDUCATION

(Autonomous) (IS O/IEC - 2700) rtified)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

8

MAHARASHT

(Autonomous) (IS O/IEC - 2700) rtified)

SUMMER- 19 EXAMINATION Subject Name: Electric circuits and network <u>Model Answer</u>

Subject C 22330

9

	Ans:	Replace the voltage sources Vi and V2 by	3M-for					
		short circuit to obtain the circuit shown	K∟					
		below: R_1 R_2 MWM R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2	1M for power					
			Torritora					
		$K_{TH} = K_1 ^{-1} K_2$						
		Rithz for maximum power transfer						
		to the load is -						
		$R_L = R_{TH}$.						
		.: The value of RL = RTH so that maximum power will transfer from source to it.						
		The equation for Pmax -:						
		$P_{L(max)} = \left(\frac{V_{TH}}{R_{TH} + R_{TH}}\right)^2 R_{TH}$						
		Substitute RL=RTH						
		.: Therefore the power transfer to the load is given by the equation						
		$P_{\rm L} = \frac{\sqrt{2}}{4} R_{\rm TH}$						
Q.	Sub	Answers	Marking					
No.	Q. N.		Scheme					
3		Attempt any THREE of the following :	12- Total Marks					
	a)	List the power factor improves technique and explain any one with advantage and disadvantage	4M					
	Ans:	Power factor improvement techniques are	2Marks					
		i) Synchronous Motors (or conscitors)	for					
		ij Synchionous wotors (or capacitors)	Listing					
		ii) Static Capacitors	Techniq					
			ues					

MAHARASHT Autonomous) BOARD OF TECHNICAL EDUCATION

rtified)

(Autonomous) (IS O/IEC - 2700)

SUMMER- 19 EXAMINATION twork <u>Model Answer</u>

Subject Name: Electric circuits and network

Subject C 22330

	111) 1	nase Advancers			
	i) Syr ove cor ii) Sta mo Sin unl iii) Pha tha	achronous Motors (or ca er-excited and, especial recting the power facto rection can be varied b tic Capacitors : They ar tors and are practically ce their capacitance is a ess arrangements for an ase Advancers : They are t the economical degree	apacitors) : These machines of lly, when they are running r in bulk and have the specia y changing their excitation. e installed to improve the p loss-free (i.e. they draw a cu not variable, they tend to or utomatic switching of the ca e fitted with individual mach	Iraw leading kVAR when they are idle. They are employed for al advantage that the amount of ower factor of a group of a.c. urrent leading in phase by 90°) ver-compensate on light loads, apacitor bank are made. ines. However, it may be noted in each case, depends upon the	2Marks for any one techniq e
	tari	iff arrangement betwee	en the consumers and the su	ipply authorities.	
נמ	(i) (ii) (iii) (iii) (iv)	e series resonance to pa Resonant frequency Impedance Current and Magnification.	arauel resonance on the basi	S OT:	411
Ans:					1 mark
	S.No.	Parameter	Series Circuit	Parallel Circuit	point
	1	Resonant frequency	$f_r = \frac{1}{2\pi\sqrt{LC}}$	$f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$	
	2	Impedance	Minimum, Z = R	Maximum, Z = L/CR	
		1			

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

11

	4	Magnification	Voltage magnification takes	Current magnification	
			place	takes place	
c)	Write tl applicat	he procedure to conve tion. Draw neat diagra	ert voltage source into equivalent ams of both the sources.	t current source. Give its	4M
Ans:	A volta equival	ge source with a ser ent current source w	ies resistance can be converted ith a parallel resistance.	l into (or replaced by) and	2 marks for Procedu re
	The ster i)Find tl	ps for converting praches for converting praches by the second second second second second second second second	ctical voltage source into practic pplied by the source when a 'sho	cal current source. ort' is put across terminals A	
	and B. Therefo	ore,			
	ii)The va	Curre alue of resistance whi	ent I=V/R ch is connected in parallel with th	he equivalent current source	
	have th ii)This e	e same value of serie	s resistance(R _s =R _{sh}). ource is then connected in para	llel with the shunt(parallel)	
	resistan	ice. $\int_{-v}^{k} v$	$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & $		1 mark for diagram

– Page 11/ -

SUMMER- 19 EXAMINATION twork <u>Model Answer</u>

Subject Name: Electric circuits and network

Subject C 22330

BOARD OF TECHNICAL EDUCATION

(Autonomous) (IS O/IEC - 2700) rtified)

MAHARASHT

Subject C 22330 Subject Name: Electric circuits and network Model Answer 13 102 150 Circuit for Isc 3d) m 1052 1552 1052 1552 & RL Isc 100V -1002 LOOV ß Step1: To obtain the value of Isc: The Total resistance RT is given by 2marks $R_T = 10 + [10][157]$ for obtainin $= 10 + \left[\frac{10 \times 15}{10 + 15}\right]$ g Short = 10+6 = 16 r circuit The source current I is given by $I = \frac{V}{R_T} = \frac{100}{16} = \frac{6.25 \text{ A}}{16}$ current The short circuit current Isc is the current flowing through the 15 or resistor $T_{sc} = I \times \frac{10}{10+15}$ = 6.25 × <u>10</u> 25 2.5A Step 2: TO obtain the value 1mark for Rth DA . . RH = 15 + [10/11] = 15+5 = 2052 Step 3: Norton's equivalent circuit 1mark for ZRL \$2002 equivale B nt circuit (1)

SUMMER-19 EXAMINATION

- Page 13/ -

MAHARASHT Autonomous) BOARD OF TECHNICAL EDUCATION

(Autonomous) (IS O/IEC - 2700) rtified)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

14

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
4		Attempt any THREE of the following :	12- Total
			Marks
	(-)		
	(a)	in a series circuit containing pure resistance pure inductance, the current and voltage are expressed as:	4171
		l(t) = 5 sin (314t + 2 П/3) and v(t) = 20 sin (314t + 5 П/6)	
		Find:	
		(i) Impedance of circuit	
		(ii) Resistance of circuit	
		(iii) Inductance in circuit	
		(iv) Average power drawn by circuit.	
F	Ans:	I(t) = 5 sin (314t + 2 Π/3) and v(t) = 20 sin (314t + 5 Π/6)	
		Converting the above standard sinusoidal forms into polar forms	
		Rms values of current and voltage are	
		$I = 5/\sqrt{2} = 3.54 \text{ A}$; $V = 20/\sqrt{2} = 14.14 \text{ V}$	
		Converting the above standard sinusoidal forms into polar forms	
		Ĩ= (3.54└120°) A	
		<i>V</i> = (14.14 ⊥150°) V	1 mark for
		By Ohm's law,	Impeda nce
		Circuit Impedance, $\vec{Z} = \vec{V} / \vec{I} = (14.14 \lfloor 150^{\circ}) / (3.54 \lfloor 120^{\circ})$	
		= (4 Δ 30°) Ω	
			1

– Page 14/ -

MAHARASHT

rtified)

(Autonomous) (IS O/IEC - 2700)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

	=(3.46+j2) Ω	
	From polar form of Impedance	
	i) Impedance of circuit = Z = 4 Ω	1 mark for Resistan
	From Rectangular form of impedance	ce
	ii) Resistance of circuit R = Z Cos ϕ = 4 Cos(30) = 3.46 Ω	
	iii) Inductance of circuit L	
	we know that $X_L = 2 \Omega$ (from rectangular form of impedance)	1 mark
	$X_L = 2\pi fL$	for Inductan ce
	L = X _L /2π f = 2/(2π×50) = 6.37 × 10 ⁻³ H	
	From polar form of Impedance, $\phi = 30^{\circ}$	
	So, pf=cos ϕ	
	=cos30°	
	=0.866 lagging	1 mark
	iv) Average power, P=VI Cos ϕ	for Average
	= 14.14 x 3.54 x cos30°	power
	=43.35 W	
(b)	Find I, I1,I2 power factor of the circuit in Fig. No. 4	4M
	<u> </u>	

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject C 22330

– Page 16/ -

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C 22330

17

– Page 17/ –

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

18

	• $I_2 = I \times \frac{Z_1}{Z_1 + Z_2} = (20.33 \lfloor -16.52) \frac{(10 \lfloor 53.13)}{(10 \lfloor 5.71)}$ = $(20.33 \lfloor -16.52) (1 \lfloor 47.42)$ $\therefore I_2 = 20.33 \lfloor 30.9^\circ A$ • Power factor = $\cos \phi = \cos (-16.52)$ = 0.958 (agging	
(c	Explain the term bandwidth of a series resonant circuit. Derive its equation.	4M
Aı	s: Band width (BW) of a series resonance circuit is defined as the range of frequency over which circuit current is equal to or greater than $\frac{Ir}{\sqrt{2}}$ or 70.7 % of maximum current where I ₀ or I _r = current at resonance.	Explanat ion 2 Marks
	The resonance curve for a series RLC circuit is shown below: $ \int_{a} \frac{V}{R} = \int_{a} \frac{V}{R}$	
	From the graph it is clear that for all frequencies lying between f_1 and f_2 the circuit current is equal to or greater than 70.7 % of maximum current i.e.	

– Page 18/ –

MAHARASHT Autonomous) BOARD OF TECHNICAL EDUCATION

rtified)

(Autonomous) (IS O/IEC - 2700)

22330

SUMMER-19 EXAMINATION

Model Answer

Subject Name: Electric circuits and network

	$I_r = V/R$	
	Thus Band width of the circuit, BW = $\Delta f = (f_2 - f_1) Hz$	
	Or BW = $\Delta \omega = (\omega_2 - \omega_1)$ rad/sec	
	Derivation of equation for bandwidth -	
	The relationship between bandwidth , Q factor and resonant frequency is given by	2marks for
	$(f_2 - f_1) = f_r/Q_r$	Derivati on
	Where $f_2 - f_1 = b$ and width, f_r = resonant frequency and $Q_r = Q$ factor at resonance	
	But $f_r = \frac{1}{2\pi\sqrt{LC}}$	
	And $\mathbf{Q}_{\mathrm{r}} = \frac{1}{R} \sqrt{\frac{L}{C}}$	
	Substituting these values in the equation for bandwidth,	
	$\Delta \mathbf{f} = \mathbf{f}_r / \mathbf{Q}_r = \frac{\frac{1}{2\pi\sqrt{LC}}}{\frac{1}{R}\sqrt{\frac{L}{C}}} = \frac{R\sqrt{C}}{2\pi\sqrt{CL^2}} = \frac{R}{2\pi L} Hz$	
	Therefore bandwidth $\Delta \mathbf{f} = \mathbf{f}_2 - \mathbf{f}_1 = \frac{R}{2\pi L}$ Hz	
	OR	
	$\Delta \omega = 2\pi \Delta f = \frac{R}{L} rad/sec$	
<u> </u>		

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer

Subject C 22330

(d)	A bridge network ABCD has arms AB, BC, CD and DA of resistances 1, 1,2 and 1 ohm respectively . If the detector AC has a resistance of 1 ohm, determine by star/delta transformation, the network resistance as viewed from the battery terminals.	4M
	D T T T T T T T T T T T T T	
Ans:		2 marks for Converti ng delta to star
		2 marks for Network resistan ce

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Subject C 22330

- Page 21/ -

MAHARASHT (Autonomous) (ISO/IEC - 2700) CBOARD OF TECHNICAL EDUCATION rtified)

22

- Page 22/ -

MAHARASHT Autonomous) BOARD OF TECHNICAL EDUCATION

(Autonomous) (IS O/IEC - 2700) rtified)

23

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C 22330

40) Replace the 15V source by a short circuit, Keeping 30V 502 P 42 Resistor 6 r & 4 2 are parallel 301 652 1mark · 6/14 = 2.452 for l'1 -> Current through 6or Revistor due to 30V source is I', 500 Resistor 502 x 2.42 are series \$2.452 300 Total Resistance . RT= 5+2.4=7.4 SL R7=7.452 .; Total current I = 30 = 4.05A 4 = 1.62 A :, I, = I × 4 = 4.05 × -> current through 6 & Resistor due to 15V source ie I," 502 P 402 15V Revision 502 8602 are in Parallel 1mark 1. 5/16 = <u>30</u> = 2.72 SL for I"1 40 Resistor 2.72 v2 & 4 v2 are in serie -15V 2.722 ... Total Resistance is 1mark RT = 2.72 +4 = 6.72 & for I_{6Ω} Total curvent I = V = 15 RT = 2.23 A $I_{i}^{"} = I \times \frac{5}{5+6} = 2.23 \times \frac{5}{11}$ I," = -1.01 A (As current is flowing from Q to P we will convider it- to be negative) . Total wovent in 602 Resistor is (from Pto Q) $\mathcal{I}_{i}^{\prime} + \mathcal{I}_{i}^{\prime\prime}$ = 1.62 - 1.01 I60 = 0.61A

- Page 23/

MAHARASHTI (Autonomous) (ISO/IEC - 2700)

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

24

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	A coil of resistance 20 Ω and 200 μH is in parallel with a variable capacitor. The voltage of the supply is 20 V at a frequency of 10^6Hz . Calculate :	6M
		(i) The value of C to give resonance.	
		(ii) The Q of the coil.	
		(iii) The current in each branch of the circuit at resonance.	

- Page 24/ -

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

25

MAHARASHTI

rtified) (ISO/IEC - 2700

(Autonomous)

SUMMER-19 EXAMINATION Subject Name: Electric circuits and network Model Answer

Subject C 22330

26

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network Model Answer Subject C 22330

- Page 27/ -

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C

Subject C 22330

28

- Page 28/

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C 22330

29

- Page 29/ -

MAHARASHT

(ISO/IEC - 2700) rtified)

(Autonomous)

SUMMER- 19 EXAMINATION Subject C 22330 Subject Name: Electric circuits and network Model Answer

30

<u>Brench</u> P3 1000 P3 10 V, is I' = 34.28 L-57.09 Convert these currents into Rectangular Form I,' = 18.63 - j28-78 I" = 8.823 - J14.71 : I AB Branch = I' + I' $= T_{AB Branch} = T_{,}' + T_{,}'' \text{ or } c/r + 5 (3+3) Branch$ = 27 - 453 - 3 + 3 + 3 = 27 - 453 - 3 + 3 + 3 = 27 - 453 - 3 + 3 + 3Sketch the phasor diagram for the nominal drawn circuit with justification of each phasor c) 6M drawn. Ans: **Consider series R-L circuit** Circuit diagram phasor diagram of RL circuit :1 Mark FR WIL FLOORT where $V_R = V_0$ have across the ROT 'R' where $V_R = V_0$ have across the inductor Phasor VL = Yeltage across the inductor 1 diagram = Total voltage of the circuit :3 Marks "- + IE

- Page 30/ -

MAHARASHT SOURCE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 2700 rtified)

(Autonomous)

SUMMER- 19 EXAMINATION Subject Name: Electric circuits and network Model Answer

Subject C 22330

31

Explanat Explanation : -Th RL circuit Resistor R & Inductor L' 9m ion :2Marks connected in series with a voltage supply of Vive since both R + 1 are connected in series, so the current in both the elements of the ext remains same. Te IR = IL = I let VR & VI be Voltagree drop across resistor of inductor. In Resistor the voltage VR & IR g phase . Where as In Inductor, the party current - are not in phase . The Vollage the current by go? Note: If the student has attempted to solve the question considering any one of the following circuits : Series R-Cor R-L-C circuit or Parallel R-L or R-C or R-L-C circuit, give appropriate marks.

– Page 31/ –

(Autonomous) (IS O/IEC - 2700) rtified)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Model Answer

Subject C 22330

No.Q. N.6.Attempt aa)Use noda	ny TWO of the following :	Scheme 12- Total Marks
6. Attempt a	ny TWO of the following :	12- Total Marks
a) Use noda		Marks
a) Use noda		
	analysis to calculate the current flowing in each branch of the network shown in	6M
Fig. No. 8		
20		

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject

Subject C 22330

33

MAHARASHT

(Autonomous) (IS O/IEC - 2700) rtified)

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject

Subject C 22330

SUMMER- 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C 22330

35

MAHARASHT

(Autonomous) (IS O/IEC - 2700) rtified)

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject

Subject C 22330

36

– Page 36/ –

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C

Subject C 22330

37

MAHARASHTI

(ISO/IEC - 2700) rtified)

(Autonomous)

SUMMER- 19 EXAMINATION

Subject Name: Electric circuits and network

Subject C 22330

38

- Page 38/

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u> Subject C 22330

10A 80 00 **BOARD OF TECHNICAL EDUCATION**

(Autonomous) (IS O/IEC - 2700) rtified)

MAHARAS HT

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

22330 Subject C

40

BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 2700) rtified)

MAHARAS HT (Autonomous)

SUMMER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject C 22330

MAHARASHT (Autonomous) (IS O/IEC - 2700) BOARD OF TECHNICAL EDUCATION rtified)

SUMMER– 19 EXAMINATION
Subject Name: Electric circuits and network <u>Model Answer</u>

Subject C 22330

42

Parallel configurations:- $[y]_{1}$ Comb hed Port 1 Comb hed Port 2 $[y]_{2}$ When two-ports are connected in a parallel configuration as shown in figure, The choice of two-port parameter is the y-parameters. The y-parameters of the combined network are found by matrix addition of the two individual y-parameter matrices. $= [y]_1 + [y]_2$ Where Y parameter equation can be written as below $= \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$ where Y_{11} , Y_{12} , Y_{21} and Y_{22} are sum of corresponding values of individual networks.

- Page 42/ -